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Abstract

Microstructures and failure mechanisms of friction stir spot welds in aluminum 6061-T6

lap-shear specimens are investigated based on experimental observations. Optical

micrographs of the cross sections of friction stir spot welds in lap-shear specimens before

and after failure are examined. These friction stir spot welds show the failure mode of

nugget pullout under lap-shear loading conditions. The experimental observations suggest

that under lap-shear loading conditions, the failure is initiated near the possible original

notch tip in the stir zone (SZ) and the failure propagates along the circumference of the

nugget to final fracture. Microindentation hardness data of base metal (BM), heat affected

zone (HAZ), thermal-mechanical affected zone (TMAZ) and SZ are obtained. The

interface between the HAZ and the TMAZ is the softest region, where the cracks of friction

stir spot welds in the lap-shear specimens under the loadings initiate and lead to fracture of

the specimens.
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1. Introduction

A rapid development of applications of lightweight materials in the automotive

industry is reflected in the increasing use of aluminum and magnesium alloys. Many

components produced from these alloys, by stamping, casting, extrusion and forging, have

to be joined as a part of manufacturing processes. Resistance spot welding (RSW) is the

most commonly used joining technique for parts made of steel sheets. The main

advantages of the resistance spot welding process are its relatively low capital cost, ease of

maintenance, and high tolerance to poor part fit up compared with other fusion welding

technologies [1]. However, resistance spot welding of aluminum sheets by contrast has

several technological challenges. First, the electrode tip life is shorter than that for welding

steel sheets. Resistance spot welding of aluminum sheets is also likely to produce such

defects as porosity, as reported in Thornton et al. [2] and Gean et al. [3]. Recently, a new

friction stir spot welding technology has been developed by Mazda Motor Corporation and

Kawasaki Heavy Industry [4,5] with much lower operating and investment cost.

A schematic illustration of the friction stir spot welding process is shown in Fig. 1

[4]. The process is applied to join two metal sheets. A rotating tool with a probe pin

plunges into the upper sheet and a backing tool beneath the lower sheet supports the

downward force. The downward force and the rotational speed are maintained for an

appropriate time to generate frictional heat. Then, heated and softened material adjacent to
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the tool deforms plastically, and a solid state bond is made between the surfaces of the

upper and lower sheets.

One benefit of friction stir spot welding compared to the conventional fusion

welding processes is that for aluminum-based alloys, it is possible to make joints where the

strength of the weld is comparable to that of the base metal alloy. Aluminum alloys are

difficult to be fusion-welded due to the requirements of (i) gas shielding of weld pool, and

(ii) removal of oxide layers prior to or during the welding process [6,7]. In addition,

aluminum alloys are subject to voids and solidification cracking defects when they cool

from a liquid [8,9]. Therefore, friction stir spot welding offers significant performance

advantages. Because melting is avoided, the energy input used for friction stir spot welding

is considerably low. Consequently, the HAZs and residual stresses associated with the

welds can be relatively small [1].

In this paper, microstructures and failure mechanisms of friction stir spot welds in

aluminum 6061-T6 lap-shear specimens are investigated based on experimental

observations. A tool with a flat tool shoulder and a cone-shaped probe pin was used.

Micrographs of friction stir spot welds in lap-shear specimens before and after failure are

obtained. Microstructures for friction stir spot welds are then presented. Finally, the

failure mode and failure mechanism for these friction stir spot welds are discussed.

2. Experimental procedures

In this investigation, aluminum 6061-T6 sheets with a thickness of 1 mm were used.

Table 1 lists the chemical compositions (wt.%) of the 6061-T6 aluminum sheets. Fig. 2

schematically shows a lap-shear specimen used to investigate the strength of friction stir

spot welds under shear loading conditions. The weld nugget is idealized as a cone. The

lap-shear specimen has a thickness of 1 mm, a width of 25 mm, an indentation diameter of
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approximately 12 mm, an overlap length of the upper and lower sheets being 50 mm, and a

length of 100 mm. As also shown in Fig. 2, two spacers with a length of 30 mm are

attached to the both ends of the lap-shear specimen to induce a pure shear to the interfacial

plane of the nugget for the two sheets and to avoid the initial realignment during testing.

The indentation on the surface of the upper sheet of the specimen is caused by the tool

plunging into the upper sheet of the specimen.

The welds were made by using a hydraulic riveting machine (LF-168, Chang Lian

Fa Machinery Co., Ltd.) as shown in Fig. 3(a). A fixture was designed for friction stir spot

welding of specimens. The fixture with a specimen is shown in Fig. 3(b). The specimen is

mounted on a backing tool by four bolts. Granite was selected as the material for the

backing tool to achieve low heat conductance through the backing tool. A load cell (CLP-

5B, Tokyo Sokki Kenkyujo Co., Ltd.) was placed under the backing tool to measure the

downward force during friction stir spot welding. We used a NI SCXI-1121 isolated input

module with a sampling rate up to 51033.3  samples/sec to acquire signals from the load

cell and a NI SCXI-1600 module with a sampling rate of 200,000 samples/second and 16-

bit resolution to provide data acquisition and control capabilities.

For the conventional friction stir spot welding process, the important processing

parameters are the tool geometry, the rotational speed, the holding time and the downward

force. As schematically shown in Fig. 4, during the friction stir spot welding process in this

investigation, the rotational speed is kept constant and the downward force is controlled by

the riveting machine control unit. Initially, the downward force increases almost linearly

for a period of time. Then the downward force is kept nearly constant for a period of time

and finally decreases almost linearly to zero. As shown in the figure, it represents the time

that the tool contacts to the top surface of the upper sheet and ft represents the time that

tool extracts from the top surface of the upper sheet. The time between it and ft
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represents the total holding time. The rotational speed, constant downward force, holding

time if tt  , and force holding time for the friction stir spot welding of the specimens are

3445 rpm, 1740 N, 41 sec, and 38 sec, respectively.

Fig. 5(a) is a photo of a tool used in this investigation. The tool has a cylindrical

shoulder and a cone-shaped probe. Fig. 5(b) shows a schematic plot of an extracted tool

and two welded sheets after welding. The diameters of the tool shoulder and the probe pin

used in this investigation are 12 mm and 5 mm, respectively. The depth of the probe pin is

1.5 mm. The angle of the chamber with the probe end surface is 10 . H is the plunge

depth of the tool. The actual bonding diameter for the weld is denoted as cD . The plunge

depth, H , and the diameter of the weld, cD , will depend upon the processing parameters.

The lap-shear specimens were then tested by using a tensile testing machine (Wain-

Tsiang Ltd., Taiwan) at a monotonic displacement rate of 5.0 mm per minute. The load

and displacement were simultaneously recorded during the test. Tests were terminated

when the two sheets of the specimen were separated. In order to understand the

relationship between failure locations and microindentation hardness variations of the

friction stir spot welds, microindentation hardness data across the cross-sections of the

specimens were obtained using a diamond indenter with a 1-kgf load and a 10 sec dwell

time.

3. Results and discussions

Fig. 6(a) shows a lap-shear friction stir spot weld specimen. Fig. 6(b) shows a

close-up top view of the friction stir spot weld on the upper sheet. As shown in the top

view, the top surface of the weld looks like a button with a central hole. The squeezed-out

material is accumulated along the outer circumference of the shoulder indentation. Fig. 6(c)
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shows a close-up bottom view of the friction stir spot weld on the lower sheet. In the

bottom view, the contact mark due to the backing tool can be seen.

In order to understand the failure mechanisms of friction stir spot welds under lap-

shear loading conditions, optical micrographs of the cross sections of friction stir spot

welds before and after failure were obtained. A systematic investigation of the processing

parameters of holding time and constant downward force was carried out in order to obtain

the friction stir spot welds of the lap-shear specimens failed in the circumferential failure

mode under tensile tests. Note that the circumferential failure mode may be preferred over

the interfacial failure mode. It can be explained by the higher failure loads of the friction

stir spot welds in aluminum 6061-T6 lap-shear specimens failed in the circumferential

mode than those failed in the interfacial mode [10]. Sawhill and Furr [11] reported similar

results for the resistance spot welds of some carbon steels.

Fig. 7(a) shows a micrograph of the cross section of a friction stir spot weld before

testing. Fig. 7(b) shows close-up views of regions I, II, III and IV as marked in Fig. 7(a)

where the BM is not shown. In Fig. 7(a), there is an indentation with a profile that reflects

the shape of the probe pin and the flat shoulder of the tool. The bottom surface is kept

almost flat except near the central hole. Near the outer area of the central hole, there is a

gray area which represents the SZ where the upper and lower sheets are bonded. The

diameter of the nugget is nearly 6.5 mm, which is the diameter of the nearly circular gray

area of the micrograph shown in Fig. 7(a). Note that for common low carbon steel, the

standard nugget diameter for resistance spot welds is 5.5 mm with a 5.5 mm sheet thickness

[12]. Two notch tips can be seen near points A and B. The notch tips extended into the

weld appear to be formed from the unwelded interfaces between the two sheets. Note that

in the SZ no defects were observed compared with the aluminum resistance spot welds

where porosity was encountered.
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For the friction stir spot weld made by the tool, as the tool continues to rotate and

plunge into the upper and lower sheets, the material under the tool shoulder near the probe

pin is stirred. Outside the SZ, the interfacial surface of the upper and lower sheets is

distorted into a macroscopic curved interface as shown in region IV in Fig. 7(a). The

shoulder indentation squeezes out a portion of the upper sheet material and, consequently,

the thickness of the upper sheet material under the shoulder indentation decreases, resulting

in a radial expansion of the upper sheet along the outer circumference of the shoulder

indentation. However, due to the constraint of the neighboring material, the sheet is

therefore bent along the outer circumference of the shoulder indentation. The bending of

the sheet creates a gap between the upper and lower sheets. The squeezed out material

from the shoulder indentation forms a ring along the outer circumference of the shoulder

indentation on the top surface of the upper sheet. The squeezed out material can be seen in

Fig. 7(a). In Fig. 7(b), a micrograph of the BM shows relatively coarse grains. A close-up

view of region I shows less coarse grains in the HAZ than in the BM. A close-up view of

regions II shows finer and distorted grains in the TMAZ. Close-up views of regions III and

IV show very fine equiaxed grains in the SZ. The equiaxed grains in the SZ are probably

formed due to stir and recrystallization. These equiaxed grains appeared in the SZ of

friction stir welding are also reported by Liu et al. [13]. In Fig. 7(b), a close-up view of

region IV shows that the curved interface becomes vague and disappears close to the SZ.

Fig. 8 shows a failed lap-shear friction stir spot weld specimen and close-up views

of the friction stir spot weld in the failed lap-shear specimen. The circumferential failure

mode or the nugget pullout failure mode can be seen on the lower sheet of the failed

specimen in Fig. 8(a). Fig. 8(b) shows a top view of the failed friction stir spot weld. The

hole diameter is almost the same as the indentation diameter iD or the tool shoulder

diameter tD . Fig. 8(c) shows a top view of a friction stir spot weld on the lower sheet of
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the failed specimen. As shown in Figs. 8(a) and 8(c), a small portion near the left hand side

of the remaining weld nugget is removed possibly due to tearing and rubbing of the upper

sheet. Figs. 8(a) and 8(c) show clearly the failure occurs very close to the outer

circumference of the shoulder indentation.

Fig. 9 shows a cross sectional view and close-up views of a friction stir spot weld in

a partially failed lap-shear specimen. The arrows in Fig. 9(a) schematically show the

loading direction. The HAZ, the TMAZ, and the SZ are also indicated in Fig. 9(a). As

shown in Fig. 9(a), near the upper right portion of the friction stir spot weld, marked as Leg

2, a crack (marked as point A) appears to emanate from the tip of a curved notch that

terminates near the boundary of the SZ. However, no failure or damage can be seen in the

lower left leg, marked as Leg 1, due to the different geometries of the nugget in the upper

and the lower sheets, in contrast to the failure process of the resistance spot weld as shown

in Lin et al. [14]. The failure of the friction stir spot weld in the lap-shear specimen may be

initiated in the upper sheet near the middle part of the nugget, marked as point A and then

propagates along the nugget circumference, marked as point B. Finally, the upper sheet is

torn off with some part of the nugget, marked as point C. A similar failure mechanism was

also observed in HSLA steel lap-shear specimens [15] and in mild steel square-cup

specimens under combined opening and shear loading conditions [16].

Fig. 9(b) is a close-up view of region II shown in Fig. 9(a). In Fig. 9(c), a curved

notch is shown near the right hand side of the weld nugget. The zigzag curved interface

between the upper and lower sheet is shown in the square marked D. As shown in Fig. 9(c),

the growth of the curved crack does not follow the zigzag curved interface. Fig. 9(d) is a

close-up view of the zigzag curved interface in the square marked D in Fig. 9(c). Fig. 9(d)

clearly shows that the location of the curved crack is not along the zigzag curved interface.

It is possible that the curved crack growth occurring in the TMAZ near point A in Fig. 9(a)
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is due to asymmetrical weld nugget geometry and inhomogeneous material properties in the

TMAZ.

Five specimens are spot-friction-welded with the same processing parameters to

assess the repeatability of the failure load and failure mechanism under the quasi-static

tensile tests. The average of the failure loads of these five specimens under the loading is

4457 N. The maximum and minimum of these five failure loads are 4709 N and 4155 N,

respectively. Observations of the micrographs of the cross sections of the five failed

friction stir spot welds revealed that they have the same failure mechanisms under the

loading conditions.

Based on a recent study of Lin et al. [14], the necking/shear failure mechanism is

the principal failure initiation mechanism of the nugget pullout failure mode in lap-shear

specimens from the mechanics viewpoint. Note that due to the limited ductility, a

combined mode of necking and shear localization is the principal failure mechanism of

aluminum 6111 sheets under biaxial stretching conditions as indicated in Chien et al. [17].

In order to understand the relationship between failure locations and

microindentation hardness variations of the friction stir spot welds, microindentation

hardness data across the BM, HAZ, TMAZ and SZ were obtained. Indentations were made

with a spacing of 0.5 mm along each of the four parallel lines shown in Fig. 10(a). The

four lines are parallel to the loading direction of the specimen shown in Fig. 2 and on the

cross-section cut through the center of the weld. Fig. 10(b) shows the hardness variation

traversing from the BM, across the HAZ and the TMAZ, and through the SZ. The hardness

initially decreases upon approaching the boundary between the BM and the HAZ, then

drops sharply to a minimum in the TMAZ. After passing the TMAZ, the hardness

gradually increases up to the SZ hardness of about 90 Hv. The interface between the HAZ

and TMAZ is the softest region according to Fig 10, where the cracks of friction stir spot
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welds in the lap-shear specimens under the loadings initiate and lead to fracture of the

specimens. Note that Liu et al. [13] reported that some of their friction-stir-welded joints of

2017-T351 aluminum alloy fractured in the softened regions near the interface between

weld nuggets and TMAZs.

As also shown in Fig. 10(b), the BM is the hardest regions (approximately 120 Hv)

of the specimen. This is contrary to predictions based on grain size arguments alone, which

suggest the hardness maximum may occur in the SZ. The considerable softening of the

material in the SZ in contrast to that in the BM can be explained by a significant reduction

of dislocation density and precipitate distributions [18-21].

4. Conclusions

Microstructures and failure mechanisms of friction stir spot welds in aluminum

6061-T6 lap-shear specimens were investigated based on experimental observations. For

friction stir spot welds made in this investigation, the circumferential failure mode or the

nugget pullout failure mode was observed. The experimental results suggest that under lap-

shear loading conditions, the failure is initiated near the SZ in the middle part of the nugget

and the failure propagates along the circumference of the nugget to final fracture. The

location of the initial necking/shear failure is near the possible original notch tip and the

failures of the friction stir spot welds were fractured through the TMAZ near the weld

nuggets. Based on the microindentation hardness measurements, the hardness initially

decreases upon approaching the boundary between the base metal and the HAZ, then drops

sharply to a minimum in the TMAZ. After passing the TMAZ, the hardness gradually

increases up to the SZ hardness. The interface between the HAZ and the TMAZ is the

softest region, where the cracks of friction stir spot welds in the lap-shear specimens under
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the loadings initiate and lead to fracture of the specimens.
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Table 1
Chemical compositions (wt.%) of 6061-T6 aluminum sheets

Mg 1.00
Si 0.59
Fe 0.51
Cu 0.30
Cr 0.22
Mn 0.05
Ti 0.02
Zn <0.01
Al Rem.
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Fig. 1. A schematic illustration of friction stir spot welding process.
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Fig. 2. A schematic plot of a lap-shear specimen and the applied force P shown as the bold
arrows.
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Fig. 3. (a) A hydraulic riveting machine for friction stir spot welding. (b) A close-up view
of the tool and the specimen fixture.
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Fig. 4. A schematic plot of the processing parameters as a function of time.
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Fig. 5. (a) A photo of a tool. (b) A schematic plot of an extracted tool and two welded
sheets after welding.
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Fig. 6. (a) A lap-shear friction stir spot weld specimen of aluminum 6061-T6, (b) a close-
up view of the friction stir spot weld on the upper sheet, (c) a close-up view of the friction
stir spot weld on the lower sheet.
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Fig. 7. (a) A micrograph of the cross section of a friction stir spot weld made by the tool,
(b) close-up views of regions I, II, III and IV.
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Fig. 8. (a) A failed friction stir spot weld lap-shear specimen, (b) a top view of a friction
stir spot weld on the upper sheet of the failed specimen, (c) a top view of a friction stir spot
weld on the lower sheet of the failed specimen.
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Fig. 9. (a) A micrograph of the cross section of a friction stir spot weld in a partially failed
lap-shear specimen, (b) a close-up view of region II, (c) a close-up view of region I, (d) a
close-up view of the region marked in the square D.
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Fig. 10. (a) Locations of four horizontal hardness traverses. (b) Hardness profiles.


